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SUMMARY

The methods of the calculus of variations are used to find functions of

time for the thrust magnitude and direction that minimize the propellant con-

sumption for a given interplanetary transfer. The flight is assumed to be

planar and to take place in an inverse-square gravitational field. Propul-

sion is provided by a fixed thrust and specific impulse engine that can be

turned on and off at will. With such an engine, the determination of the

thrust-magnitude function reduces to finding the best points at which to begin

and end a coast phase.

Numerical results are presented for one-way trips from Earth to Mars and

from Mars to Earth (both assumed in coplanar, circular orbits) for three

values of initial acceleration (0.5MiO -4, 1)<10-4, and 5XI0 -4 Earth standard

g's) and five values of specific impulse (2000, 4000, 6000, 8000, and i0,000

sec). For these engine parameters, the trip time is varied between the

continuous-propulsion time and the optimum time, which is analogous to the

two-impulse, Hohmann transfer for impulsive thrust. These results are com-

pared with the constant-jet-power, variable-thrust engine for the case of

transfers to the best point on the Martian ellipse.

Although the variational solution for round trips is not considered, the

one-way trip data of the type presented may be used to calculate equivalent

results. A sample calculation is given to illustrate the procedure.

INTRODUCTION

The long propulsion periods associated with low-acceleration flight give

rise to the problem of determining appropriate functions of time for engine

thrust magnitude and direction in order to minimize the propellant consumed

in accomplishing a given mission. As shown in references i to 4, such func-

tions can be found by use of the indirect methods of the calculus of varia-

tions. In formulating such a problem it is necessary to introduce constraints



on the engine thrust and specific impulse consistent with the assumedmodeof
engine operation. Otherwise_ as shownin reference i_ the variational solu-
tion will yield infinite thrust and specific impulse. The purpose of this
rep0rt is to present a variational solution with constraints specifically
designed for early ion engines. This solution is then used to determine
optimum trajectories for both the outbound and inbound heliocentric portions
of low-thrust Mars missions. The resulting variational solution can also be
applied to manyother trajectory problems or to flight with chemical- and
nuclear-rocket engines operating under similar contraints.

In references 2 and 5 the tkmust and specific impulse for ion engines were
limited by constraining engine operation to constant beampower; the result-
ing solution required large variations in thrust and specific impulse along
the path. Early ion engines probably will be capable of operating efficiently
over only limited ranges of thrust and specific impulse. Thus, although the
variable-thrust trajectories of references 2 and 5 represent an upper bound
on the capabilities of future ion engines, they are not applicable to early
ion engines. The contraints assumedin the present analysis are that engine
thrust and specific impulse (and, hence, beampower) are constant. Since it
is assumedthat the engines are capable of shutdownand restart, the tra-
jectories mayhave coast phases. This problem is treated in reference 3 for
the case of a constant planar gravitational field. Reference 5 presents a
more comprehensive solution that includes a spherical inverse-square gravita-
tional field and covers both the constant-thrust and variable-thrust cases.
The solution of the present report is specifically for the constant-thrust
case in a two-dimensional inverse-square gravitational field and contains
more detailed and extensive information about this case than has been pre-
sented elsewhere. Emphasis is placed herein on a discussion of the nature of
the op_imizations and the effect of initial thrust-to-weight ratio and spe-
cific i_pulse. Furthermore_ typical results are given to illustrate the
analysis of round-trip missions.

The variational analysis results in a set of Euler-Lagrange differential
equations that yield the optimum thrust direction and indicate the best times
for initiating and terminating the coast phase. Numerical results were ob-
tained by simultaneous numerical integration of the Euler-Lagrange equations
with the equations of motion on an IBM704 digital computer. As shownin
reference 4, all the differential equations can be analytically integrated
during the coast phase. The analytical solutions to the Euler-Lagrange
equations for the present problem are presented in appendix B. The details
of all numerical techniques employedhere are given in reference 6.

Sufficient numerical data are presented to indicate the nature of constant-
thrust trajectories and to allow computation of somespecific one-_¢ayand round-
trip missions. Charts are presented for both Earth-Mars and Mars-Earth trans-
fers that use an optimum travel angle. The data are presented as a function of



travel time and speclfic impulse for thrust-to-weight ratios of 0.5XlO-4, iXlO-4_
and 5XI0-A. The constant-thrust transfers are briefly comparedwith the
variable-thrust transfers presented in reference 8.

For round-trip missions, nonoptimumtravel angles will generally be re-
quired to meet planetary configurations. Thus, data for a wide range of
travel angles are presented for a few representative values of thrust-to-
weight ratio and specific impulse. These data are then used to illustrate a
round-trip calculation.

ANALYSIS

The problem to be solved is to determine the vehicle thrust program and
hence the trajectory that minimizes the amount of propellant consumedin ac-
complishing a given mission. The engine is assumedto operate at constant
thrust and specific impulse during powered flight, but it can be turned off
for coast flight. For simplicity the vehicle is assumedto move in a two-
dimensional trajectory in a central inverse-square gravitational field.

The vehicle trajectory must satisfy the following equations of motion:

• bi
u = - _-- + o_r + sin

r2 m
(la)

v._
• 2urn j_ cos
(I)= - --+

r m r
(lb)

r = u (ic)

(ld)

where

= -_ (le)

(All symbols are defined in appendix A.) In order to satisfy the engine con-

straints, the exhaust velocity Vj is treated as a constant throughout the

flight, and the propellant flow rate _ is given by

= _des = const for powered flight[

J= 0 for coast flight

(2)
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Formulation Of Variational Problem

The variational problem to be solved is to determine _ and _ as func-

tions of time, subject to the constraints given by equations (i) and (2), so that

the amount of propellant consumed in accomplishing a given mission is minimized.

This problem is a special case of the problem of Bolza as formulated in refer-

ence 7 and is known in the calculus of variations as the problem of Mayer. The

Multiplier Rule and associated corollaries developed in reference 7 will be used

to solve _his problem. In the problem of Mayer a function g of the initial

and final conditions is minimized. To minimize the propellant consumption (or

equivalently, the negative of final mass), g is given by

g = -mf (3)

The constraints given by equations (i) and (2) are introduced through the func-

tion F defined by

6

F = Z fi_i

i=l

(4)

where

fl = u + j£- - _2 r _ _VJ_ sin @ = 0
r 2 m

(5a)

Vj_
f2 = r_o + 2uao - _ cos I/ = 0

m
(5b)

%:r-u=o (5c)

f4 = (p - (u = 0

f5--m+_=O

f6 : _(@ - }des ) : 0

(5d)

(se)

(sf)

and the h i (where i = i, 2, , 6) are the Lagrangian multipliers, which

are unknown functions of time to be determined as part of the variational so-

lution.

Equations (Sa) to (5d) are the equations of motion (eqs. (la) to (le)).

Equation (Se) is the differential equation for the vehicle mass. Equation (Sf)

states the constraints on the propellant flow rate p given by equation (2);

namely; that the propellant flow rate must be zero or the design value. At this



point it is convenient to introduce the following notation for the depen_ent
variables of the problem:

Zl(t) = u Zb(t) = m

Z2(t ) = _ Z6(t) =

Z_(t) = r Z7(t ) =

Z_(t) =

Euler-Lagrange Equations

As developed in reference 7_ a necessary condition for g to be a minimum

is that the Euler-Lagrange equation with respect to each dependent variable be

satisfied. The Euler-Lagrange equations are given by

b(bVi) b_d-{ = _ i = i, 2, .,7 (61

Applying equatlon (6) to equation (6) results In the Euler-Lagrange equations

for the present problem:

_i = 2c°h2 " _3 (7a)

_z =-2_z +7. - r

i3: -Itz+3 m2) _l + _2

_ = 0

(7c)

(7d)

_5" = m2VJ_ (?\i sin J/ + h2 cos _) (7e)

(hi cos 9 X 2 sin 9) _J_= 0 (Tf)
m

vj
-_- (hi sin _ + k2 cos _) - X5

h6 = 2_ - _des (7g)

The differential equations (7a) to (7e) must be integrated along with the equa-

tions of motion (eqs. (la) to (le)) to determine the optimum trajectory. Equa-

tion (7g) serves only to define _6 and has no further significance in the



present problem. Equation (7f) gives the value of the thrust angle along the
optim_n trajectory during powered flight (The value of the thrust angle is not
required during coast flight). From equation (Tf):

hI
tan _ = _2 for _ = _des (8)

or

AI
sin ¢ -- (ga)

h_
cos , = (9b)

The uncertainty in the signs of equations (9a) and (9b) corresponds to an un-

certainty of _ in the value of the thrust angle _ (i.e., 9 or @ + _). The

choice of sign for equations (9a) and (9b) is developed later in the section

Necessary Condition of Weierstrass. Integrating equation (Td) gives

h4 = const (!0)

Another integral of the Euler-Lagrange equations can be obtained, since

the function F does not contain the independent variable, time_ explicitly.

From reference 7_

7

fttc• _F _F

F - Zi _i :

i=l

(il)

In the present case, where the function F does not contain time explicitly,

this reduces to

7

i--1

-C (12)

or from equations (4) to (Sf)

( j£- -_2rr2 " VJ_ sin @)hl + (2u_- VJ_ c°s _)_2m m - uh5 - a_4 + _h5 = C

(!3)



Equation (13) Can be used to determine the value of one of the Lagrangian

multipliers. In the present case it is convenient to determine h5 from equa-

tion (13) and eliminate the need for integrating equation (7e). Thus,

h5=

for # o

To evaluate h5 for _ = 0, it should be noted from equation (7e) that in this
f

case A5 = 0. Thus, h5 is a constant during coast. Specifically, _5 is equal

to its value at the termination of the previous propulsive phase of the trajec-

tory. The continuity of h5 at the point of transition from powered flight to

coast is established by applying the Weierstrass-Erdmann Corner Condition

(ref. 7). This condition states that the _F/_Z i must have equal right- and

left-hand limits at such corners. For the present problem

_F _F

_F _F

(k_- rh2 _ = 0

_F _F

= h3 = o

Therefore_ at a corner such as the transition from powered flight to coast (and

vice versa)_ the Lagrangian multipliers hI to h 5 have equal right- and left-

hand limits. This implies that the constant of integration C is also continu-

ous at the corners.

Necessary Condition of Weierstrass

Two uncertainties still remain in the system of Euler-Lagrange equations.

The first is the choice of signs in equations (9a) and (gb), and the second is

the value of _ (i.e., _ = _des or O) along the path. Both of these uncer-

tainties are resolved by applying the Necessary Condition of Weierstrass

(ref. 7). Following the development in reference 3, this condition states that

for a minimizing trajectory E _ 0 where



7

i=l

(i5)

The Zi's are the actual minimizing functions, and the

differlng from the Zi's by finite, a_missible _mounts.

only _ and _ are subject to such strong variations.
be written as

Zi's denote functions

In the present problem

Equation (iS) may then

sin Jr_:+ h2 cos _r_) - _5] _>
0

(16)

In the notation of reference 3, let

k = i (hI sin _ + h2 cos _) - kS
m

(iTa)

k_ =.V_ (hl sin _r* + h2 cos _*) - hS
m

(17b) :

Then

_k - _*k * _> 0 (18)

Inequality (18) is now examined for the admissible variations in _ and _.

= _* = Pdes' @ # 9"" In this case inequality (18) reduces to

k- k__>O (i9)

or

h i sin 9 + h 2 cos @ _> hI sin JF_ + k2 cos 9" (2o)

Since, for any value of _, _* can only equal _ + _,

hi sin @ + h 2 cos @ _> 0

Substituting equations (9a) and (9b) in inequality (21) results in

(21)

± + >0 (s2)

Therefore, the plus sign is used in equations (9a) and (9b).



k = k*_ p ___*. - In this case inequality (18) reduces to

k(p - _*) >_o (23)

When k is negative, p must be less than p* and thus

iarly, when k is positive, p must be greater than p*

Pdes" In smmmlary,

p is zero. Simi-

and thus _ equals

= Pdes for

p = 0 for

k>0
w

k<O

(2_)

The sign of k then determines the powered and coast phases of the flight, and

the transition from one phase to another occurs at k = O.

The variational equations developed thus far are independent of the func-

tion gj this is characteristic of the problem of Mayer_ in which g is only a

function of the initial and final conditions. The specific nature of g in-

fluences only the boundary conditions that must be satisfied in integrating the

equations of motion and the Euler-Lagrange equations.

Boundary Conditions

If some of the Zi's are not specified at either end of the trajectory,

the free boundary values should be selected to minimize g. The boundary con-

ditions that must be satisfied for the minimizing trajectory are given by the

transversality condition (ref. 7).

trajectory

This condition states that for a minimizing

- aF dt+ dZi

i=l i=l

+ _ = o (25)

By use of equations (4), (Sa) to (Sf) j and (12), equation (2S) becomes

C dt + h I du + r_ 2 dm + _3 dr + _4 d9 + _5 dm if +dg = 0
0

(26)

Further evaluation of the boundary conditions to be satisfied requires applica-

tion of equation (26) to a specific problem. In this analysis the problem of

minimizing the propellant consumed in transferring between circular; coplanar

orbits is examined. (The problem of transfer between elliptic orbits is

discussed in appendix C). For this case g is given by equation (3), and the

following initial and final boundary conditions are known:



Initial Final

m0 rf

r 0 0of=

= _/r_ uf = 0_0

u0 = 0

_0 = 0

tO = 0

(27)

The final time tf and angle _f may be specified or left free for further

optimization of the final mass. As a consequence of the aforementioned boundary

conditions (eqs. (27)),

dm0 = di-0 = d_0 = duO = d_o = dt 0 = drf = d_f = duf = 0 (28)

and equation (26) reduces to

c dtf + X_ dgf + (x5, f - l) amf = o (29)

where the variations dtf, dgf, and dmf are independent. If tf, 9f, and mf

are not specified, their variations in equation (29) are nonzero and their re-

spective coefficients must be zero.

Since mf

and dmf _ O.

satisfied:

is the quantity subject to optimization, it is not specified

Thus_ equation (29) gives as one boundary condition to be

xs, f = l (5o)

If the position in the final circular orbit is not specified dgf _ 0_ and

equation (29) gives

x4 - o (3l)

Thus_ a circular-orbit transfer with h 4 = 0 yields the trajectory possessing

the optimum travel angle. If the final time is not specified dtf _ O, and

equation (29) also gives

c = o (32)

Thus, a circular-orbit transfer with C = 0 yields the trajectory having the

optimum travel time.

i0



Calculation Procedure and Two-Point

Boundary Value Problem

The equations required for the determination of the minimizing trajectory
are stummarizedfor convenience in appendix D. The equations of motion (eqs. (la)
to (le)) and the Euler-Lagrange equations (eqs. (7a) to (7c)) must be integrated
simultaneously to determine the minimizing trajectory. The value of the thrust
angle is given by equations (qa) and (qb)_ and the powered and coast phases are
indicated by equation (24). These equations were programed for an IBM 704 com-
puter and integrated numerically with a Rumge-Kuttatechnique by use of a step-
size control to limit the truncation error.

For the problem of transferring between circular orbits the knowninitial
conditions were given by equations (27). In order to proceed with the trajectory
integration, values for the hi(O ) must also be chosen. The values for the
hi(O ) must be selected to satisfy the desired final conditions given by equa-
tions (27) and those obtained from the transversality condition (eq. (29)); this
results in what is commonlyknownas a two-point boundary value problem.
Specifically_

Unknowninitial Desired final
conditions conditions

_i(0) r(tf) ]
h (o) = o

h3(O ) _(tf) = _j/r-_f

h4C = const _(tf)tf I

hS_ f = t.0

(33)

where for convenience C is selected as an initial condition to be determined

rather than hS.

To simplify the set of conditions (33)_ first note that the Ealer-Lagrange

equations (eqs. (7a) to (7g)) are homogeneous in h i. This means that the so-

lution is independent of the initial magnitude of one of the _i's_ which can be

considered to act as only a scale factor for the other Zi's, In the present

case, Z3(O) was selected as the scale f_ctor, and its initisl magnitude w_s

taken as unity. After a solution is obtained_ the requirement X5; f = i can

ii



then be satisfied by merely adjusting the scale factor X3(O). Thus k3(0)

and _5,f = i can be removedfrom the iteration.

A further simplification was madein the present analysis by not specifying
_f; hence, _4 was removedfrom the iteration. The solutions for optimum _f
were obtained with _4 = O, and the solution for nonoptimum _f were obtained by
covering a range in _4" Finally, the desired tf is obtained by terminating
the trajectory integration at t = tf. The set of boundary conditions (33) then
becomesthe following:

Unknowninitial Desired final
conditions conditions

hi(O ) r(tf) = rf 1
X2(O) u(tf) = 0

C _(tf) =

(34)

Obtaining a solution, then, requires that the values of three initial conditions

be determined such that the three specified final conditions are satisfied. This

problem was solved by use of a three-variable Newton-Raphson iteration scheme

wherein the various required partial derivatives were evaluated by finite-

difference methods. The iterations were terminated when residual errors in the

end conditions were such that their removal would cost no more than a specified

amount of propellant. The iteration scheme, as well as the criterion for termi-

nating the iteration, is discussed in reference 6.

RESULTS AND DISCUSSION

The variational solution developed in the ANALYSIS has been used to investi-

gate the heliocentric phases of Earth-Mars and Mars-Earth low-thrust transfer

trajectories. Tn making preliminary analyses of low-thrust interplanetary

missions, it is convenient to assume a series of two-body trajectories rather

than treating the precise muitibody problem (ref. 8). For example, for the

Earth-Mars mission, the Earth escape spiral can be computed from consideration

of Earth's gravitational field only. When the vehicle has traveled a sufficient

distance from the Earth, the coordinates can be transferred to the sun; and

during heliocentric fiight_ only the solar gravitational field can be considered.

Again, when the vehicle has approached sufficiently close to Mars, the coordi-

nates can be transferred to Mars; and during the descent spiral, only the Martian

gravitational field is considered.

The variational solution developed in the ANALYSIS can be applied to all

three phases of such a journey. 0nly the heliocentric portion, however, has

been investigated herein. Data for the Earth escape and Mars descent spirals

can be obtained from the charts of reference 8, which are based on a constant-

tangential-tHrust steering program. For constant-thrust spirals, this steering

program has been shown to give near optimmn results (ref. 2).

12



Boundary Conditions

The boundary conditions imposedon the heliocentric trajectories presented
in this report are based on transfer from geocentric to heliocentric coordinates
when the vehicle has achieved escape energy with respect to the Earth and trans-
fer from heliocentric to Martian coordinates whenthe vehicle is at escape energy
with respect to Mars. Thus_ the heliocentric trajectories begin with the vehicle
in Earth's orbit about the sun and terminate with the vehicle in Mars' orbit
about the sun. For simplicity_ Earth and Mars are assumedto movein circu!ar_
coplanar orbits about the sun. Assuminga circular orbit for Mars can lead to
significant errors in somecases. An elliptic orbit for Mars is treated in
appendix C. The values in the following table were used for the orbits of Earth

Planet

Earth

Mars

Radius,
r_
m

and Mars :

I velocity_

] radia_n_s/sec

I.5950XI0 II !. 9910×10 -7

2. 2779×1011 i. 0586XI0 -7

These values are based on a solar gravitational constant _ = 1.5255×1020

mS/sec 2. The boundary conditions are satisfied to the extent that the residual

errors result in an error in final mass of less than 0.i percent of m0.

Earth-Mars Transfers

The transfer trajectories investigated herein are limited to direct trans-

fers making less than I revolution about the sun. The resulting flights_ in

general, have either continuous propulsion or two propulsive phases with an

intermediate coast phase. To indicate the nature of these transfers_ the Earth-

Mars transfers will be examined in detail for one set of engine parameters.

Similar results would be obtained for Mars-Earth transfers. The reference set

of engine parameters selected is an initial thrust-to-weight ratio of !XI0 -4 and

a specific impulse of 8000 seconds. Later_ data for both Earth-Mars and Mars-

Earth transfers for a range of engine parameters are presented.

Effect of travel time. - The effect of travel time on Earth-Mars transfer

trajectories for the reference engine parameters is illustrated graphically in

figure l(a). The flights shown have an opti_m_m travel angle (corresponding to

K4 = 0). The quickest transfer, 181.6 days, is obtained with continuous pro-

pulsion. As travel time is increased_ the length of the coast phase increases;

and at approximately 290 days, the trip having the optimum travel time (corre-

sponding to C = O) is obtained. This journey is analogous to the Hohmann

transfer for impulsive thrust and has the longest intermediate coast phase.

13
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days

f-290 (C = O)

Slln

_181.6 (Continuous

propulsion)

(a) Trajectory profiles.

Figure 1. - Effect of travel time on Earth-Mars transfers. Initial thrust-to-weight

ratloj lXl0-_; engine specific impulse, 8000 seconds; Lngranglan multiplier _¢, O.

Specification of longer travel times merely results in the optimum transfer with

an additional coast phase either in Earth's orbit before proceeding with the

transfer or in Mars' orbit after completing the transfer. If much longer travel

times (corresponding to transfers making more than i revolution about the sun)

are specified_ transfers _ith more than one sequence of propu!sion_ coast_ pro-

pulsion could presumably be obtained. Transfers with such long travel times

were not investigated in the present analysis.

The variation of the thrust angle along the trajectories presented in

figure l(a) is shown in figure i(b). The thrust angle for the C = 0 transfer

(290 days) is nearly tangential (again analogous to the Hohmann transfer for im-

pulsive thrust). As travel time is decreased, increasingly larger radial com-

ponents of thrust are introduced. The radial components are outward from the

local horizontal for the near Earth phase of the trajectory and inward for the

Mars phase. The thrust angle for the continuous-propulsion transfer is

continuous, and the apparent discontinuity in figure l(b) is only a result of

presenting the thrust angle from -_ to _ rather from 0 to 2_. In general_
d@/dt is positive during the propulsion phases of the flight.

The effect of travel time on the final- to initial-mass ratio mf/m 0 is

shown in figure l(c) for the transfers with an optimum travel angle. As de-

veloped in the ANALYSIS, the highest mass ratio is obtained for the transfer

with C = 0. Initialiy_ travel time can be reduced from the optimum with only a

1,1
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(b) Thrust angle.
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(e) Final mass ratio. (d) Optimum travel angle•

Figure I. - Concluded. Eflfect of travel time on Earth-Mars transfers. Initial thrust-to-welght ratio,

I×iO-4_ engine specific impulse, 8000 seconds; Lagranglan multiplier _4, 0.
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small decrease in massratio. However, as the travel time approaches that for
the contlnuous-propulsion case, the massratio decreases rapidly.

The variation in the optimums1travel angle with travel time is shownin
figure i(d). The planetary configuration required for an optimum-travel-angle
transfer at a given travel time can be met once each synodic period.

Nonoptimm_ travel angles, _4 _ 0. - The transfers presented in figure i all

possess an optimum travel angle. At each travel time it is also possible to

make transfers with travel angles both larger and smaller than the optimum, at

the expense of increased propellant consumption. Thus, for one-way missions it

will generally be desirable to use transfers with an optimum travel angle. For

round-trip missions of specified duration, however, it will generally be desira-

ble to use nonoptimum travel angles for both the outbound and inbound segments of

the mission; this is discussed later.

The range of travel angles that can be achieved at a particular travel time

for an Earth-Mars transfer is illustrated graphically in figure 2. The flights

shown are those very near the maximum and minimum and the optimum travel angle

for a travel time of 240 days. The limiting cases of maximum and minimum travel

angle require continuous propulsion, and all the intervening travel angles are

obtained with varying lengths of coast phase. The longest travel angle is

achieved by initially moving inside Earth's orbit before moving out to Mars.

The shortest travel angle is obtained by moving out beyond the orbit of Mars in

the latter phase of the trajectory and entering from higher radii. This phe-

nomenon cannot be noted clearly because of the limited scale of figure 2.

>
\
\

Mars ' \

orbit _\ \

0_

orbit_

Figure 2. - Comparison of Earth-Mars transfers with optimum and

nouoptimum travel angles. Travel time_ 2_0 days_ initial

thrust-to-weight ratio, lXlO-4_ engine specific impulse,

8000 seconds.
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Figure 5. - Effect of travel angle on final- to inltlal-mass ratio

for Earth-_rs transfers. _avel time, 240 d_ys; initial thrust-

to-welght rati_ l×lO-4; euglne specific impulse, _ seconds.

The effect of travel angle on mf/r_O is presented in figure 5 for the

reference set of engine parameters and a travel time of 2_0 days. Figure 5

demonstrates the optimizing nature of h4 = 0 trajectories. Travel angles

larger than the optimum value are obtained with positive values of k4, and

travel angles shorter than the optimum are obtained with negative values of h4 •

Performance map for reference en$i_e parameters. - From data similar to

those presented in figure 5 for a range in travel time, a map of possible Earth-

Mars trajectories can be obtained. Such a performance map is presented in

figure 4 for the reference engine parameters. For convenience, travel angle is

presented as a function of travel time with the final- to initial-mass ratio as

a parameter. The continuous-propulsion flights form the outer boundary of the

map. Flights inside the boundary have a coast phase, while those outside the

boundary are not achievable with the reference engine parameters. Also_ in the

upper right portion of the map the flights have an initial as well as an inter-

mediate coast phase. Similarly, in the lower right portion of the map flights

occur with a final as well as an intermediate coast phase. The double-coast-

phase trajectories are not new trajectories, but are trajectories obtained at

shorter travel times and angles extended with an initial or final coast phase.

The boundaries of these multiple coast regions have not been evaluated because

they are characterized by k = 0 either at the start or end of the transfer,

which is a very sensitive two-point boundary value problem that cannot be

solved accurately without special machine program modifications.
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Figure 4. - Effect of travel time on travel angle for various values of final- to initlal-mass

ratio for Earth-Mars transfers. Initial thrust-to-welght ratio, lxlO-4; engine specific

impulse, 8000 seconds.

Curves indicating the C = 0 and h 4 = 0 trajectories are superimposed on

the map; once again the optimum nature of these trajectories (as given by the

transversality condition in the ANALYSIS) is apparent. The h4 = 0 curve con-

nects the vertical tangents to the mass-ratio curves; this produces the optimum

travel angle for each travel time. Similarly, the C = 0 curve connecting the

horizontal tangents gives the optimum travel time for each travel angle. The

highest mass ratio_ 0.931_ is obtained at the intersection of the hA = 0 and

and the C = 0 curves. This is the 290-day transfer described in detail in

figure I; as mentioned previously; longer travel times were not investigated in

the present analysis.

En6ine parameters. - The data presented thus far have all been for the
reference set of engine parameters. The effect of thrust-to-weight ratio on

Earth-Mars transfers with optimum travel angles is sho_m in figure 5 for a

specific impulse of 8000 seconds. For each thrust-to-weight ratio_ travel time

is varied from the minimum time (continuous-propulsion flights) to the time

18
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maximizing the final- to initial-mass ratio (flights with C = 0). The predomi-

nant effect of thrust-to-weight ratio is the widening of the band of achievable

travel times as thrust-to-weight ratio is increased. In particular, achieving

short travel times requires relatively high thrust-to-weight ratios. Also_ at

the long travel times, the optimum transfers (C = 0) approach the Hohmann trans-

fer as thrust-to-weight ratio is increased.

The effect of specific impulse on Earth-Mars transfer trajectories is shown

in figtu_e 6(a) for a thrust-to-weight ratio of 0.5×10 -4 . Again, the trajectories

have optimm_ travel angles_ and the travel time is varied from the continuous-

propulsion case to that for a maximum mass ratio. The specific impulse_ of

course, has a major effect on the required mass ratio, but a change in specific

impulse has only a minor effect on the trajectory used. For example_ a change

in specific impulse has almost no effect on the travel angle required for a

transfer of given duration, as indicated by the nearly vertical constant travel-

angle curves in figure 6(a). A secondary effect of specific impulse is to widen

the range of travel times available as the specific impulse is reduced. This is

due to the greater mass expenditure and hence increased average acceleration at

the lower specific impulses and is thus similar to the effect of thrust-to-

weight ratio shown in figure 5.
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Trajectory Charts for 0ne-Way Missions

Figures 6 and 7 summarize the trajectory data that have been obtained for

Earth-Mars transfers. All the data are for transfers with an optimum travel

angle, and the travel time varles from the minimum time for the continuous-

propulsion case to the time for the maximum final- to initial-mass ratio. In

figure 6, the final- to initial-mass ratio is presented as a function of travel

time and specific impulse for thrust-to-weight ratios of 0.5×10 -4 , iXlO -4, and

5XlO -4. In figure 7_ the apportionment of travel time into initial propulsion

time_ coast time_ and final propulsion time is presented for the same range of

engine parameters. Figures 8 and 9 present similar data for Mars-Earth tra-

jectories with optimum transfer angles. Comparison of figures 6 and 7 with

figures 8 and 9 indicates the similarity between Earth-Mars and Mars-Earth tra-

jectories.

Comparison with Variable-Thrust Trajectories

In order to compare the results of this analysis with the results for the

variable-thrust engine of reference 2, two modifications must be made. The first

concerns finding the optimum I for a given jet power and travel time. The

optimum I can be obtained as part of the variational solution as shown in ref-

erence S or by simply constructing the constant jet power-to-initial mass ratio

P/M O envelope of curves at constant F/W 0 and I. The latter method has been

used here and is illustrated in figure i0. The second modification concerns the

boundary conditions. For the comparison_ Mars r orbit was assumed to be an el-

lipse, of known eccentricity and semilatus rectm% coplanar to Earth's circular

orbit. Transfers to the Martian ellipse were made with an optimtm_ travel angle

to the best point on the ellipse for the given travel time. The transversality

conditions for these end conditions are developed and discussed in detail in

appendix C.

For comparison, a nominal value of 0.0_808 kilowatt per kilogram for P/M 0
(which corresponds to (F/W0)I = I) was assumed, and F/W 0 and I were varied

to construct the envelope curve. The resulting propellant fractions are shown

in figure i0, where they are also compared with the variable-thrust engine re-

sults. There is very little difference between the two ctu_ves at high values

of tf, but the inherent advantage of the variable-thrust engine becomes more

apparent as the travel time is reduced. This difference, at short times, be-

comes about 5 percent of the initial mass. The significance of these differ-

ences cannot fully be assessed until more is l_uown about these engines. The

propellant requirements of both engine types_ however_ are valuable as a guide
in design and evaluation.
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Figure IO. - Comparison of fixed-design engine and constant Jet power engine for Earth-Mars

transfers. Jet power-to-lnltial mass ratio, 0.04808 kilowatt per kilogram; (F/Wo)I = 1.

Round-Trip Calculations

As pointed out previously, this report does not contain sufficient data for

a comprehensive study of round-trip, Earth-Mars missions. A limited amount of

nonoptimum-travel-angle data has been computed, however, and will be used to

help illustrate a method for computing round trips that uses performance charts

of the type shown in figure 4. In the calculation of round trips of given du-

ration and waiting time_ the travel time and travel angle for the outbound

transfer may be selected at will. Once this has been done, however, the same

variables for the inbound transfer must satisfy the rendezvous equations

t m - tw= tou t + tin •

traDE - twa_4 = _out + _in j

(55)
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where

tm round-trip mission time

tw waiting time

tou t outbound travel time

tin inbound travel time

mE Earth's angular velocity

_M Mars' angular velocity

9out outbound travel angle

_in inbound travel angle

In view of the rendezvous equations it can be seen that optimum-travel-angle

transfers can be used only for special combinations of tw and tm. To opti-

mize the round trip, for specified tm and tw the pair of outbound parameters

(tout' Pout) must be found that maximizes the mass at return to Earth. Such a

problem is, in principle, within the scope of the indirect method of the calculus

of variations. As such_ however, it is beyond the scope of this report.

To 3olve this same problem by use of performance maps such as the one pre-

sented in figure 4, a selection is first made of F/Wo, I, tout, and gout"

From an appropriate performance map, the corresponding value of (mf/mO)ou t can

be read. Thus the thrust-to-weight ratio at Mars arrival, (F/W0)(mo/mf) , will be

known and can be used with data (such as those found in ref. 8) to find the mass

ratio required to spiral into and out of an orbit about Mars. Thus, the value

of (F/W0)in can be computed and can be used together with tin and Pin as

determined from equations (35) to obtain the necessary value of (mf/mo)in from
an appropriate inbound performance map.

In order to minimize the number of performance charts required, the first

choice of (t,_)ou t can be made such that (F/W0)in has a value corresponding to

that for one of the inbound performance maps that is available. Furthermore, it

should be noted from figure 4 that a variety of values for (t,P)ou t can be se-

lected at the same value of (mf/mO)ou t. Since all such cases will use the same

inbound performance chart, it is possible to find the optimum value of (t,_)out

for a given value of (mf/mO)ou t by use of only two performance maps. This

latter procedure is illustrated in figure II, where all the values of (t,_)in
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Earth transfers. Initial thrust-to-weight ratio, 1.25×10-4; en_lne specific impulse, 8000 seconds.

[

along the dashed curve were computed from equations (55) by use of tm = 950,

tw = 500_ and a series of outbound trips taken from figure A at

(mf/mO)ou t = 0.875. The value of (mf/mO)ou t = 0.875 has been selected so that,

with (F/WO)ou t = IXIO -_, (F/WO)in = 1.25XI0 -4, and I = 8000 seconds (figs.

and ii), sufficient propellant was available to spiral into and out of an orbit

about Mars at i.i X rM. From figure ii it can be seen that the best trip of

this type occurs when the dashed curve becomes tangent to one of the mass-ratio

curtis for the inbound trip. The details of the best case from figure ii are

given in the following table_
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Outbound

Spiral in

Park

Spiral out

Inbound

Overall

Time,

t,

days

209

36.9

4=30.5

32.6
2_I1

95O

Polar

angle,

radians

2.550

• 337
3.938

•298

2.935

t0. 058

Final- to

initial-mass

ratio_

0.875
.95%

1

.958

.919

.735

The case shown in the aforementioned table is the best possible for the chosen

values of F/W0, I, tm, tw, and (mf/m0)ou t. In order to find the optimum value

of (mf/mO)out, the basic procedure illustrated by figure i± i have to be re-

peated for other values of (mf/mO)ou t, and each new value would require a differ-
ent inbound performance map.

One advantage of the method presented here is that it allows the computation

of optimum round trips for many different combinations of tw and tm without

any change in the number of performance maps required. Should it be necessary to

different values of (F/W0)ou t and I, however, the number ofinvestigate many

charts required could become prohibitive.

CONCLUDING REMARKS

The calculus of variations has been used to derive differential equations

that define planar, two-body, optimum trajectories for given boundary conditions.

In the derivation, it is assumed that the gravitational field is of the inverse-

square type and that the engine operates with fixed thrust and specific impulse

but _y be shut down and restarted at will. The resulting equations have been

programed for an IBM 704 computer along with a three-variable Newton-Raphson

iteration scheme to overcome the inherent two-point boundary value problem. This

machine program has been successfully applied in an investigation of both Earth-

Mars and Mars-Earth transfer trajectories with a range of values for initial

thrust-to-weight ratio and engine specific impulse.

In order to compare results with those for continuously variable thrust as

presented in reference 2, a special series of calculations has been made for

transfers to an elliptical Martian orbit from a circular Earth orbit. The final

comparison of these results shows that the two solutions differ very little at

long travel times and that the variable-thrust solution has an advantage at short

travel times that amounts to about 5 percent of the initial mass for the case

chosen.
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Most of the data presented have the optimum travel angle at each travel time
and are, therefore_ most applicable to the study of one-way transfers. Suffi-
cient nonoptimum-travel-angle data have been presented to illustrate a possible
method for computing rotund-trip trajectories.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, September &, 1962

29

\



C

E

e

F

F/Wo

f

g

I

J

K

_, £, J

k

L

m

P/ b

P

r

t

tf

tm

t w

u

vj

APPE__2N A

SYMBOLS

first integral to Euler-Lagrange equations

Weierstrass excess function

eccentricity

6

fihi

initial thrust-to-weight ratio

constraint equation

function of initial and final conditions to be minimized

engine specific impulse, sec

functional to be minimized by variational methods

constant of integration

transversality functions for elliptic orbits

function defining coast phases

function associated with analytical solution for coast phases

mass_ kg

jet power-to-initial mass ratio, kw/kg

semilatus rectum, m

radius, m

time_ days

travel time, days

mission time, days

wait tim% days

radial velocity, m/sec

engine exhaust velocity, 9.80665 I_ m/sec
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Z

CL

P

e

h

_f

@

Co

dummy variable

argument of pericenter_ radlans

propellant flow rate, kg/sec

true anomaly_ radians

Lagrangian multiplier

gravitational constant_ mS/sec 2

polar angle, radians

travel angle_ radians

thrust angle measured from normal to radius_ radians

polar angular velocity, radians/sec

Subscripts :

des design

E Earth

f final (t = tf)

M Mars

m mission

p propellant

w waiting

0 t=O

Superscripts :

d/dt

' d/dm
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APPENDIXB

SOLUTIONOFEVfZR-LAGRANGEEQUATIONSDURINGCOAST

The purpose of this appendix is to derive analytical solutions for the
following system of equations:

_l 25x2+ _3 = o (BI)

h 4
i2 - - x2 + 25Xl+ -- : o (B2)

r r

r

= r(_) 2 - -_- (B_)
r2

r_ = -2_(¢) (B5)

which apply during the coast phase. Equations (B4) and (BS) have the well-ltnown

solutions:

P (sG)
r = i + e cos (_ - _)

and

=
Changing the independent variable in equations (BI) and (B2) from t

leads to

to

I.

hl_ - 2_h 2 + h3 = 0

and

, r >'¢
h2 q) - r X2 + 25hi + --r = 0

where h i = dhl/d_, and so forth. Substitution of equation (B3) into (B8)

results in:

t,,

_pr - (25_+ r_)_2 _Xl c $x4= o

(By)

(_)

(Bg)
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From equation (BS),

2_r + r_--O

Therefore_

c
' : + :- (BiO)

XI - rq0 rq0 r

By use of relations (B6) and (B7), equation (BI0) can be integrated to give

where

: sineXI
we e _ cos @ + KI sin e

d8

sin2@(l + e cos 8)2

(BII)

e sin @ (i + 2e2)sin e 6e tan -I+ l+e

i- e2 (1 + e cos O) 2 (i- e2)(1 + e cos 8) - (i- e2) 3/2

cot 8
for 0 < e < i

(i + e cos 0)2

8 = _ - _ and K I is a constant of integration. In evaluating L, only the

elliptical case has been presented because of its frequent occurrence. Substi-

tuting equation (BII) into equation (Bg) and integrating lead to

X2 = 1 + e cos 8 [_e 2 L(I + e cos 8)2 + cot 0 + kl e

KI(I + e cos 8) 2 }
X sin 8 P + - K2 (BI2)

e

where K_ is a constant of integration. Equations (B6), (B7), (BII), (BI2),

and (B3) can then be used to determine h3.

Once the initial values of hl_ h2, 8, p, and e are known, the constants

K I and K 2 can be evaluated with equations (B!I) and (BI2). The problem that

still remains is to solve for the hi at the second k = 0 point, the termi-

nation of coast. Since the h i are given as functions of 8_ the value of 8
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at k = 0 must be determined. Becauseof the transcendental nature of the
equations_ someiterative solution must be used to calculate e at the termina-
tion of coast. A method based on finite differences, which converges rapidly to
e at k = 0_ has been successfully applied. The subsequent power phase is
numerically integrated by the methods previously discussed.
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APPENDIX C

ELLIPTIC ORBIT BOUNDARY CONDITIONS

Transfers to an elliptic orbit are in principle no different from transfers

to a circular orbit; however, certain parameters may be more convenient to use

than others. In this analysis, the eccentricity, semilatus rectum, and perigee

angle are used to describe the shape, size_ and orientation of the ellipse with

respect to the initial circular orbit. The true anamoly is used to identify the
position of the vehicle in the final orbit. It should be noted here that the

orientation of the ellipse gives rise to another degree of freedom - a circle has

no orientation. The transformation of variables can be made through the use of

the following equations:

C
u =VP e sin 8

=?= (l +pe cos 0)2

1 + e cos e

q0=e+_

(cz)

Substitution of the total derivatives of equations (CI) into the transversality

expression (eq. (26)) gives

dJ:-d_f+[_'5_+(_>'l +2r2mc°sp es2-

(_ u 3re 2)+ _3-_i-_ _ dp

r2e sin eh 3
Ukl 2r2eco sin e h2 +

+ t_e p p

r2 pC°S e h3)d e

tf
]\

+ h4) de + h 4 d_ + C dt_

J
to

(02)

or, for the case of fixed initial conditions,

[( 5-1)dm+X de+g dp +_de+h4 dc_+C dtI =0dJ=

..8

tf

(c3)

where _, _, and _' are coefficients of de, dp, and de as defined by equa-

tion (C2). As previously discussed, a transfer is optimum with respect to a
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particular variable if its coefficient is zero at the boundary. Consider, for
example, transfers used in the comparison with the variable-thrust engine of
reference 2. Here, each transfer was madewith ef_ pf, and tf fixed; as pre-
viously discussed, hS,f = i was satisfied by scaling. In addition,_= 0 and

h4 = 0 were also satisfied. These transfers then have the optimum orientation

of the Martian ellipse (e,p)_ and the vehicle arrives at the optimum point on the

final ellipse 8f in the given time tf. Because of the relation among orien-

tation, true anomaly, and travel angle, the optimum orientation also implies op-

timum travel angle for some given 8f. The two-point boundary value problem for

this case is, therefore_

At t = tO At t = tf

hI e = eM = 0.093369

k_ P = rM = 2"2S8m<loll

C _'= 0

(c4)

Another type of transfer that can be made is the same as that just described

except that the point of arrival is nonoptimum e. The optimum point of arrival

_= 0 is included in this class of transfers. This class of transfers also

points out that there are two points on the final ellipse that have _= 0 -

maximum mf and minimum mf. Therefore, an additional test should be made to

distinguish the two cases. Also, some points on the Martian ellipse are not

achievable with all sets of engine parameters and are defined by the continuous-

propulsion limits of the engine. In this case, the minimum mf occurs at the

continuous-propulsion points but is not defined by _= 0. These characteristics

of the elliptic orbit boundary are shown in figure 12, where both _ and mf/m O

are given as functions of ef for an Earth-Mars transfer with F/W 0 = 1)<10-4 ,

I = !0,000 seconds and tf = 200 days.
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APPENDIXD

EQUATIONSFORMINIMIZINGTRAJECTORY

The following equations are required for the determination of the minimizing
trajectory:

Equations of motion:

where

Euler-Lagrange equations:

where

sin @ and cos @ are given by

= _ J_- + _2 r + VJ__ sin @
r2 m

= _ 2___ + Vj___cos
r m r

sin @ =

m = -_

il = 242 - h3

i2 = _2_h I + u h2 h4r -T

i3 "- (2-Ji+ _°2)hl+r3 _2

(la)

(ib)

(lo)

(id)

kI

(le)

(7a)

(Vb)

(re)

k4 = const

COS $/ =

h 2
(9)
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is given by

= _des for k _ 0

J= 0 for k _ 0

where

k = Vj (hl sin _ + h 2 cos _) - hS
m

and

h 5 =
C 2 - m , m

cOS _)h2 + uZ5 + &4
for

(24)

(17a)
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